Complex-Valued Gaussian Processes for Regression
نویسندگان
چکیده
In this paper we propose a novel Bayesian kernel based solution for regression in complex fields. We develop the formulation of the Gaussian process for regression (GPR) to deal with complex-valued outputs. Previous solutions for kernels methods usually assume a complexification approach, where the real-valued kernel is replaced by a complexvalued one. However, based on the results in complex-valued linear theory, we prove that both a kernel and a pseudo-kernel are to be included in the solution. This is the starting point to develop the new formulation for the complex-valued GPR. The obtained formulation resembles the one of the widely linear minimum mean-squared (WLMMSE) approach. Just in the particular case where the outputs are proper, the pseudo-kernel cancels and the solution simplifies to a real-valued GPR structure, as the WLMMSE does into a strictly linear solution. We include some numerical experiments to show that the novel solution, denoted as widely non-linear complex GPR (WCGPR), outperforms a strictly complex GPR where a pseudo-kernel is not included.
منابع مشابه
Proper Complex Gaussian Processes for Regression
Complex-valued signals are used in the modeling of many systems in engineering and science, hence being of fundamental interest. Often, random complex-valued signals are considered to be proper. A proper complex random variable or process is uncorrelated with its complex conjugate. This assumption is a good model of the underlying physics in many problems, and simplifies the computations. While...
متن کاملExact simulation of complex-valued Gaussian stationary processes via circulant embedding
Circulant embedding is a technique that has been used to generate realizations from certain real-valued Gaussian stationary processes. This technique has two potential advantages over competing methods for simulating time series. First, the statistical properties of the generating procedure are exactly the same as those of the target stationary process. Second, the technique is based upon the d...
متن کاملProbabilistic Programming with Gaussian Process Memoization
Gaussian Processes (GPs) are widely used tools in statistics, machine learning, robotics, computer vision, and scientific computation. However, despite their popularity, they can be difficult to apply; all but the simplest classification or regression applications require specification and inference over complex covariance functions that do not admit simple analytical posteriors. This paper sho...
متن کاملL2-Small Deviations for Weighted Stationary Processes
We find logarithmic asymptotics of L2-small deviation probabilities for weighted stationary Gaussian processes (both for real and complex-valued) having power-type discrete or continuous spectrum. As in [12], our results are based on the spectral theory of pseudodifferential operators developed by Birman and Solomyak.
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کامل